1.5.3 Sum of Fractions Series

The best way to illustrate this trick is by example:

16+112+120+130=123+134+145+156\frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} = \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \frac{1}{5 \cdot 6} =1+1+1+126=412=13= \frac{1 + 1 + 1 + 1}{2 \cdot 6} = \frac{4}{12} = \frac{1}{3}

So the strategy when you see a series in the form of ab(b+1)+a(b+1)(b+2)+\frac{a}{b \cdot (b+1)} + \frac{a}{(b+1) \cdot (b+2)} + \dots is to add up all the numerators and then divide it by the smallest factor in the denominators multiplied by the largest factor in the denominators.

Let’s look at another series:

142+156+172+190+1110=167+178+189+1910+11011\frac{1}{42} + \frac{1}{56} + \frac{1}{72} + \frac{1}{90} + \frac{1}{110} = \frac{1}{6 \cdot 7} + \frac{1}{7 \cdot 8} + \frac{1}{8 \cdot 9} + \frac{1}{9 \cdot 10} + \frac{1}{10 \cdot 11} =1+1+1+1+1611=566= \frac{1 + 1 + 1 + 1 + 1}{6 \cdot 11} = \frac{5}{66}

Problem Set 1.5.3

112+120+130+142\frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42}
172+190+1110+1132\frac{1}{72} + \frac{1}{90} + \frac{1}{110} + \frac{1}{132}
130+142+156\frac{1}{30} + \frac{1}{42} + \frac{1}{56}
730+720+712\frac{7}{30} + \frac{7}{20} + \frac{7}{12}