1.5.4 a/b + b/a Trick

Let’s look at when we add the two fractions ab+ba\frac{a}{b} + \frac{b}{a}:

ab+ba=a2+b2ab=2ab2ab+a2+b2ab=2+(ab)2ab\frac{a}{b} + \frac{b}{a} = \frac{a^2 + b^2}{ab} = \frac{2ab - 2ab + a^2 + b^2}{ab} = 2 + \frac{(a - b)^2}{ab}

Here is an example:

57+75=2+(75)275=2435\frac{5}{7} + \frac{7}{5} = 2 + \frac{(7 - 5)^2}{7 \cdot 5} = 2 \frac{4}{35}

There are some variations to this trick. For example:

1113+211=(1113+1311)1111=2+221431=14143\frac{11}{13} + \frac{2}{11} = \left(\frac{11}{13} + \frac{13}{11}\right) - \frac{11}{11} = 2 + \frac{2^2}{143} - 1 = 1 \frac{4}{143}

This is a popular variation that is used especially on the last column of the test because the trick is there but not as obvious.

Problem Set 1.5.4

1213+1312\frac{12}{13} + \frac{13}{12}
56+65\frac{5}{6} + \frac{6}{5}
1519+1915\frac{15}{19} + \frac{19}{15}
355+5323 \frac{5}{5} + \frac{5}{3} - 2
75+571\frac{7}{5} + \frac{5}{7} - 1
1113+211\frac{11}{13} + \frac{2}{11}
713+67\frac{7}{13} + \frac{6}{7}
56+1152\frac{5}{6} + 1 \frac{1}{5} - 2
1315+213\frac{13}{15} + \frac{2}{13}
58+85940\frac{5}{8} + \frac{8}{5} - \frac{9}{40}
35+53+1115\frac{3}{5} + \frac{5}{3} + \frac{11}{15}
57+753\frac{5}{7} + \frac{7}{5} - 3
1517+215\frac{15}{17} + \frac{2}{15}
1115+411\frac{11}{15} + \frac{4}{11}
1113+211\frac{11}{13} + \frac{2}{11}
1415+114\frac{14}{15} + \frac{1}{14}
11213+11121 \frac{12}{13} + 1 \frac{1}{12}
(57+75)÷2(\frac{5}{7} + \frac{7}{5}) \div 2
1112+111\frac{11}{12} + \frac{1}{11}
1522+7151\frac{15}{22} + \frac{7}{15} - 1
1114+3112\frac{11}{14} + \frac{3}{11} - 2