1.5.2 Switching Numbers and Negating on Subtraction

Far too common, students make a mistake when subtracting two fractions whose result is a negative answer. An example of this is 4561011124 \frac{5}{6} - 10 \frac{11}{12}. Most of the time, it is incredibly easier switching the order of the subtraction then negating the answer. Taking the above problem as an example:

456101112=(101112456)4 \frac{5}{6} - 10 \frac{11}{12} = -(10 \frac{11}{12} - 4 \frac{5}{6}) =(10111241012)= -(10 \frac{11}{12} - 4 \frac{10}{12}) =(6112)= -(6 \frac{1}{12})

Here is another example to illustrate the same point:

256423=(423256)2 \frac{5}{6} - 4 \frac{2}{3} = -(4 \frac{2}{3} - 2 \frac{5}{6}) =(446256)= -(4 \frac{4}{6} - 2 \frac{5}{6}) =(156)= -(1 \frac{5}{6})

Problem Set 1.5.2

2233562 \frac{2}{3} - 3 \frac{5}{6}
4236354 \frac{2}{3} - 6 \frac{3}{5}
1593591 \frac{5}{9} - 3 \frac{5}{9}
2344352 \frac{3}{4} - 4 \frac{3}{5}
13731 \frac{3}{7} - 3
2383142 \frac{3}{8} - 3 \frac{1}{4}
2346782 \frac{3}{4} - 6 \frac{7}{8}
34589103 \frac{4}{5} - 8 \frac{9}{10}
3495133 \frac{4}{9} - 5 \frac{1}{3}
5671213145 \frac{6}{7} - 12 \frac{13}{14}
3166133 \frac{1}{6} - 6 \frac{1}{3}
2564232 \frac{5}{6} - 4 \frac{2}{3}
4781223244 \frac{7}{8} - 12 \frac{23}{24}
4561011124 \frac{5}{6} - 10 \frac{11}{12}
23571102 \frac{3}{5} - 7 \frac{1}{10}
1453251 \frac{4}{5} - 3 \frac{2}{5}