1.4.7 Converting a/40 and b/80, etc… to Decimals

The following isn’t necessarily a trick but more of a procedure I like to follow when I am approached with converting a40\frac{a}{40} and b80\frac{b}{80} into decimals (usually on the first column of problems). So for a40\frac{a}{40} I treat it as:

a40=a40×1/41/4=a/410\frac{a}{40} = \frac{a}{40} \times \frac{1/4}{1/4} = \frac{a/4}{10}

So the technique is to divide the numerator by 4 then shift the decimal point over. Similarly, for b80\frac{b}{80} you want to divide by 8 and shift the decimal point over. Let’s look at a couple of examples:

4340=1+340=1+.7510=1.075\frac{43}{40} = 1 + \frac{3}{40} = 1 + \frac{.75}{10} = 1.075 2780278=3.3753.37510=.3375\frac{27}{80} \Rightarrow \frac{27}{8} = 3.375 \Rightarrow \frac{3.375}{10} = .3375

Problem Set 1.4.7

140\frac{1}{40}
340\frac{3}{40}
740\frac{7}{40}
21402 \frac{1}{40}
4340\frac{43}{40}
32351\frac{3}{2^3 \cdot 5^1}
.0125.0125
48 is % greater than 4048 \text{ is \% greater than } 40
740\frac{7}{40}
32 is what % of 80?32 \text{ is what \% of } 80?
1140\frac{11}{40}
322352\frac{3^2}{2^3 \cdot 5^2}
72 is what % of 400?72 \text{ is what \% of } 400?
52352\frac{5}{2^3 \cdot 5^2}
47204 \frac{7}{20}
580\frac{5}{80}
27.5%27.5\%
432352\frac{4^3}{2^3 \cdot 5^2}
1.6 is % of 201.6 \text{ is \% of } 20
342454\frac{3^4}{2^4 \cdot 5^4}