1.4.3 Finding a Remainder when Dividing by 11

Finding the remainder when dividing by 11 is very similar to finding the remainder when dividing by 9 with one catch: you add up alternating digits (beginning with the ones digits) then subtract the sum of the remaining digits. Let’s look at an example to illustrate the trick:

13542 ÷ 11 has what remainder?

  • Sum of the Alternating Digits: (2+5+1)=8(2 + 5 + 1) = 8
  • Sum of the Remaining Digits: (4+3)=7(4 + 3) = 7
  • Remainder: 87=18 - 7 = 1

Sometimes adding then subtracting “down the digits” will be easier than finding two explicit sums then subtracting. For example, if we were finding the remainder of 3456789÷113456789 \div 11, instead of doing (9+7+5+3)(8+6+4)=2418=6(9 + 7 + 5 + 3) - (8 + 6 + 4) = 24 - 18 = 6 it might be easier to do 98+76+54+3=1+1+1+3=69 - 8 + 7 - 6 + 5 - 4 + 3 = 1 + 1 + 1 + 3 = 6. That is what is so great about number sense tricks, is there are always methods and approaches to making them faster!

Problem Set 1.4.3

7653÷11 remainder7653 \div 11 \text{ remainder}
745321÷11 remainder745321 \div 11 \text{ remainder}
142536÷11 remainder142536 \div 11 \text{ remainder}
6253718÷11 remainder6253718 \div 11 \text{ remainder}
87125643÷11 remainder87125643 \div 11 \text{ remainder}
325476÷11 remainder325476 \div 11 \text{ remainder}
Find k so 23578k is divisible by 11\text{Find } k \text{ so } 23578k \text{ is divisible by 11}
Find k so 1482065k5 is divisible by 11\text{Find } k \text{ so } 1482065k5 \text{ is divisible by 11}
Find k so 456k89 is divisible by 11\text{Find } k \text{ so } 456k89 \text{ is divisible by 11}
Find k so 377337k is divisible by 11\text{Find } k \text{ so } 377337k \text{ is divisible by 11}