2.2.1 Sum of Series

The following are special series whose sums should be memorized:

Sum of the First m Integers

_n=1mn=1+2+3++m=m(m+1)2\sum\_{n=1}^{m} n = 1 + 2 + 3 + \cdots + m = \frac{m(m + 1)}{2}

Example: 1+2+3+11=11122=661 + 2 + 3 \cdots + 11 = \frac{11 \cdot 12}{2} = 66

Sum of the First m Odd Integers

_n=1m(2n1)=1+3+5++(2m1)=((2m1)+12)2=m2\sum\_{n=1}^{m} (2n - 1) = 1 + 3 + 5 + \cdots + (2m - 1) = \left(\frac{(2m - 1) + 1}{2}\right)^2 = m^2

Example: 1+3+5++15=(15+12)2=82=641 + 3 + 5 + \cdots + 15 = \left(\frac{15 + 1}{2}\right)^2 = 8^2 = 64

Sum of the First m Even Numbers

_n=1m2n=2+4+6++2m=m(m+1)\sum\_{n=1}^{m} 2n = 2 + 4 + 6 + \cdots + 2m = m(m + 1)

Example: 2+4+6++22=222(222+1)=1112=1322 + 4 + 6 + \cdots + 22 = \frac{22}{2} \cdot \left(\frac{22}{2} + 1\right) = 11 \cdot 12 = 132

Sum of First m Squares

_n=1mn2=12+22++m2=m(m+1)(2m+1)6\sum\_{n=1}^{m} n^2 = 1^2 + 2^2 + \cdots + m^2 = \frac{m(m + 1)(2m + 1)}{6}

Example: 12+22++102=10(11)(21)6=3511=3851^2 + 2^2 + \cdots + 10^2 = \frac{10(11)(21)}{6} = 35 \cdot 11 = 385

Sum of the First m Cubes

_n=1mn3=13+23++m3=(m(m+1)2)2\sum\_{n=1}^{m} n^3 = 1^3 + 2^3 + \cdots + m^3 = \left(\frac{m(m + 1)}{2}\right)^2

Example: 13+23++103=(10112)2=552=30251^3 + 2^3 + \cdots + 10^3 = \left(\frac{10 \cdot 11}{2}\right)^2 = 55^2 = 3025

Sum of the First m Alternating Squares

_n=1m(1)n+1n2=1222+32±m2=±m(m+1)2\sum\_{n=1}^{m} (-1)^{n+1}n^2 = 1^2 - 2^2 + 3^2 - \cdots \pm m^2 = \pm \frac{m(m + 1)}{2}

Examples: 1222+32+92=9102=451^2 - 2^2 + 3^2 - \cdots + 9^2 = \frac{9 \cdot 10}{2} = 45 1222+32122=12132=781^2 - 2^2 + 3^2 - \cdots - 12^2 = -\frac{12 \cdot 13}{2} = -78

Sum of a General Arithmetic Series

_i=1mai=a1+a2++am=(a1+am)m2\sum\_{i=1}^{m} a_i = a_1 + a_2 + \cdots + a_m = \frac{(a_1 + a_m) \cdot m}{2}

To find the number of terms: m=ama1d+1m = \frac{a_m - a_1}{d} + 1 where dd is the common difference.

Example: 8+11+14++358 + 11 + 14 + \cdots + 35 m=3583+1=10m = \frac{35 - 8}{3} + 1 = 10 Sum=(8+35)102=435=215\text{Sum} = \frac{(8 + 35) \cdot 10}{2} = 43 \cdot 5 = 215

Sum of an Infinite Geometric Series

_n=0a1dn=a1(1+d+d2+)=a11d\sum\_{n=0}^{\infty} a_1 \cdot d^n = a_1(1 + d + d^2 + \cdots) = \frac{a_1}{1 - d} Where d<1|d| < 1.

Examples: 3+1+13+=311/3=32/3=923 + 1 + \frac{1}{3} + \cdots = \frac{3}{1 - 1/3} = \frac{3}{2/3} = \frac{9}{2} 42+112+=41(1/2)=43/2=834 - 2 + 1 - \frac{1}{2} + \cdots = \frac{4}{1 - (-1/2)} = \frac{4}{3/2} = \frac{8}{3}

Special Cases: Factoring

Sometimes simple factoring can lead to an easier calculation.

3+6+9++33=3(1+2++11)=3(11122)=1983 + 6 + 9 + \cdots + 33 = 3(1 + 2 + \cdots + 11) = 3 \left(\frac{11 \cdot 12}{2}\right) = 198 11+33+55++99=11(1+3+5++9)=11(52)=27511 + 33 + 55 + \cdots + 99 = 11(1 + 3 + 5 + \cdots + 9) = 11(5^2) = 275

Word Problems

Example: The sum of three consecutive odd numbers is 129, what is the largest? Represent as (n2)+n+(n+2)=129(n-2) + n + (n+2) = 129. Divide by 3 to get the middle term: 129/3=43129/3 = 43. Largest is 43+2=4543+2=45.

Example: The sum of four consecutive even numbers is 140, what is the smallest? Divide by 4 to get the average (between 2nd and 3rd term): 140/4=35140/4 = 35. Middle terms are 34 and 36. Smallest is 32.

Problem Set 2.2.1

2+4+6+8++222 + 4 + 6 + 8 + \cdots + 22
1+2+3+4++211 + 2 + 3 + 4 + \cdots + 21
1+3+5+7++251 + 3 + 5 + 7 + \cdots + 25
The 25th term of 3, 8, 13, 18, ...
6+4+83+169+6 + 4 + \frac{8}{3} + \frac{16}{9} + \cdots
2+4+6+8++302 + 4 + 6 + 8 + \cdots + 30
1+3+5+7++191 + 3 + 5 + 7 + \cdots + 19
35310+320\frac{3}{5} - \frac{3}{10} + \frac{3}{20} - \cdots
The 20th term of 1, 6, 11, 16, ...
22+20+18+16++222 + 20 + 18 + 16 + \cdots + 2
1+3+5++171 + 3 + 5 + \cdots + 17
2+4+6++442 + 4 + 6 + \cdots + 44
1+13+19+127+1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots
13+23+33++631^3 + 2^3 + 3^3 + \cdots + 6^3
6+12+18++666 + 12 + 18 + \cdots + 66
3+5+7+9++313 + 5 + 7 + 9 + \cdots + 31
2+1+12+14+2 + 1 + \frac{1}{2} + \frac{1}{4} + \cdots
32+1216+118-\frac{3}{2} + \frac{1}{2} - \frac{1}{6} + \frac{1}{18} - \cdots
3+5+7+9++233 + 5 + 7 + 9 + \cdots + 23
47+849+16343+\frac{4}{7} + \frac{8}{49} + \frac{16}{343} + \cdots
1+4+7++251 + 4 + 7 + \cdots + 25
4+1+14+116+4 + 1 + \frac{1}{4} + \frac{1}{16} + \cdots
2+25+225+2 + \frac{2}{5} + \frac{2}{25} + \cdots
3+9+15+21++333 + 9 + 15 + 21 + \cdots + 33
7+14+21+28++777 + 14 + 21 + 28 + \cdots + 77
The 11th term in 12, 9.5, 7, 4.5 ...
4+8+12++444 + 8 + 12 + \cdots + 44
8+16+24+32++888 + 16 + 24 + 32 + \cdots + 88
5150+5152+5^1 - 5^0 + 5^{-1} - 5^{-2} + \cdots
(x)+(x+2)+(x+4)=147,(x)+(x+4)(x)+(x+2)+(x+4) = 147, (x)+(x+4)
6+12+18+24++366 + 12 + 18 + 24 + \cdots + 36
3+8+13+18++433 + 8 + 13 + 18 + \cdots + 43
12+22+32+42+52+621^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2
5+1+15+125+5 + 1 + \frac{1}{5} + \frac{1}{25} + \cdots
23+12+38+932+\frac{2}{3} + \frac{1}{2} + \frac{3}{8} + \frac{9}{32} + \cdots
3+5+7+9++313 + 5 + 7 + 9 + \cdots + 31
7+14+21+28+35+427 + 14 + 21 + 28 + 35 + 42
8+10+12++208 + 10 + 12 + \cdots + 20
10+15+20+25++10510 + 15 + 20 + 25 + \cdots + 105
8+4+2+1+8 + 4 + 2 + 1 + \cdots
4+8+12+16++444 + 8 + 12 + 16 + \cdots + 44
13+23+33++631^3 + 2^3 + 3^3 + \cdots + 6^3 *
6+12+18+24++666 + 12 + 18 + 24 + \cdots + 66
2+6+10++422 + 6 + 10 + \cdots + 42
1323+3343+531^3 - 2^3 + 3^3 - 4^3 + 5^3
3+32+34+3 + \frac{3}{2} + \frac{3}{4} + \cdots
14+28+42+56+70+8414 + 28 + 42 + 56 + 70 + 84
121+110+99++11121 + 110 + 99 + \cdots + 11
2+9+16+23++442 + 9 + 16 + 23 + \cdots + 44
13+26+39+52+65+7813 + 26 + 39 + 52 + 65 + 78
36+32+28++1236 + 32 + 28 + \cdots + 12
88+80+72++888 + 80 + 72 + \cdots + 8
Sum of 3 consecutive odd integers is 105. Largest:
4140+4142+4^1 - 4^0 + 4^{-1} - 4^{-2} + \cdots
(1+2+3++29)2(1 + 2 + 3 + \cdots + 29)^2 *
13+23+33++1131^3 + 2^3 + 3^3 + \cdots + 11^3 *
15+25+35++145+2\frac{1}{5} + \frac{2}{5} + \frac{3}{5} + \cdots + 1\frac{4}{5} + 2
(63+43+23)(53+33+13)(6^3 + 4^3 + 2^3) - (5^3 + 3^3 + 1^3)
3113191273 - 1 - \frac{1}{3} - \frac{1}{9} - \frac{1}{27} - \cdots
13+23+1+113++213\frac{1}{3} + \frac{2}{3} + 1 + 1\frac{1}{3} + \cdots + 2\frac{1}{3}
334323+533^3 - 4^3 - 2^3 + 5^3
61161366 - 1 - \frac{1}{6} - \frac{1}{36} - \cdots
2+5+8++202 + 5 + 8 + \cdots + 20
13+23+33++1331^3 + 2^3 + 3^3 + \cdots + 13^3 *
34+916+2764+\frac{3}{4} + \frac{9}{16} + \frac{27}{64} + \cdots
14+34+54++154\frac{1}{4} + \frac{3}{4} + \frac{5}{4} + \cdots + \frac{15}{4}
(3+6+9++30)2(3 + 6 + 9 + \cdots + 30)^2 *
13+23+33++831^3 + 2^3 + 3^3 + \cdots + 8^3 *