2.2.1 Sum of Series
The following are special series whose sums should be memorized:
Sum of the First m Integers
∑_n=1mn=1+2+3+⋯+m=2m(m+1)
Example:
1+2+3⋯+11=211⋅12=66
Sum of the First m Odd Integers
∑_n=1m(2n−1)=1+3+5+⋯+(2m−1)=(2(2m−1)+1)2=m2
Example:
1+3+5+⋯+15=(215+1)2=82=64
Sum of the First m Even Numbers
∑_n=1m2n=2+4+6+⋯+2m=m(m+1)
Example:
2+4+6+⋯+22=222⋅(222+1)=11⋅12=132
Sum of First m Squares
∑_n=1mn2=12+22+⋯+m2=6m(m+1)(2m+1)
Example:
12+22+⋯+102=610(11)(21)=35⋅11=385
Sum of the First m Cubes
∑_n=1mn3=13+23+⋯+m3=(2m(m+1))2
Example:
13+23+⋯+103=(210⋅11)2=552=3025
Sum of the First m Alternating Squares
∑_n=1m(−1)n+1n2=12−22+32−⋯±m2=±2m(m+1)
Examples:
12−22+32−⋯+92=29⋅10=45
12−22+32−⋯−122=−212⋅13=−78
Sum of a General Arithmetic Series
∑_i=1mai=a1+a2+⋯+am=2(a1+am)⋅m
To find the number of terms: m=dam−a1+1 where d is the common difference.
Example:
8+11+14+⋯+35
m=335−8+1=10
Sum=2(8+35)⋅10=43⋅5=215
Sum of an Infinite Geometric Series
∑_n=0∞a1⋅dn=a1(1+d+d2+⋯)=1−da1
Where ∣d∣<1.
Examples:
3+1+31+⋯=1−1/33=2/33=29
4−2+1−21+⋯=1−(−1/2)4=3/24=38
Special Cases: Factoring
Sometimes simple factoring can lead to an easier calculation.
3+6+9+⋯+33=3(1+2+⋯+11)=3(211⋅12)=198
11+33+55+⋯+99=11(1+3+5+⋯+9)=11(52)=275
Word Problems
Example: The sum of three consecutive odd numbers is 129, what is the largest?
Represent as (n−2)+n+(n+2)=129. Divide by 3 to get the middle term: 129/3=43. Largest is 43+2=45.
Example: The sum of four consecutive even numbers is 140, what is the smallest?
Divide by 4 to get the average (between 2nd and 3rd term): 140/4=35. Middle terms are 34 and 36. Smallest is 32.
Problem Set 2.2.1
2+4+6+8+⋯+22
1+2+3+4+⋯+21
1+3+5+7+⋯+25
The 25th term of 3, 8, 13, 18, ...
6+4+38+916+⋯
2+4+6+8+⋯+30
1+3+5+7+⋯+19
53−103+203−⋯
The 20th term of 1, 6, 11, 16, ...
22+20+18+16+⋯+2
1+3+5+⋯+17
2+4+6+⋯+44
1+31+91+271+⋯
13+23+33+⋯+63
6+12+18+⋯+66
3+5+7+9+⋯+31
2+1+21+41+⋯
−23+21−61+181−⋯
3+5+7+9+⋯+23
74+498+34316+⋯
1+4+7+⋯+25
4+1+41+161+⋯
2+52+252+⋯
3+9+15+21+⋯+33
7+14+21+28+⋯+77
The 11th term in 12, 9.5, 7, 4.5 ...
4+8+12+⋯+44
8+16+24+32+⋯+88
51−50+5−1−5−2+⋯
(x)+(x+2)+(x+4)=147,(x)+(x+4)
6+12+18+24+⋯+36
3+8+13+18+⋯+43
12+22+32+42+52+62
5+1+51+251+⋯
32+21+83+329+⋯
3+5+7+9+⋯+31
7+14+21+28+35+42
8+10+12+⋯+20
10+15+20+25+⋯+105
8+4+2+1+⋯
4+8+12+16+⋯+44
13+23+33+⋯+63 *
6+12+18+24+⋯+66
2+6+10+⋯+42
13−23+33−43+53
3+23+43+⋯
14+28+42+56+70+84
121+110+99+⋯+11
2+9+16+23+⋯+44
13+26+39+52+65+78
36+32+28+⋯+12
88+80+72+⋯+8
Sum of 3 consecutive odd integers is 105. Largest:
41−40+4−1−4−2+⋯
(1+2+3+⋯+29)2 *
13+23+33+⋯+113 *
51+52+53+⋯+154+2
(63+43+23)−(53+33+13)
3−1−31−91−271−⋯
31+32+1+131+⋯+231
33−43−23+53
6−1−61−361−⋯
2+5+8+⋯+20
13+23+33+⋯+133 *
43+169+6427+⋯
41+43+45+⋯+415
(3+6+9+⋯+30)2 *
13+23+33+⋯+83 *