2.2.12 Trigonometric Formulas

Recently, questions involving trigonometric functions have encompassed some basic trigonometric identities. The most popular ones tested are included here:

The Fundamental Identities

sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1 1+cot2θ=csc2θ1 + \cot^2 \theta = \csc^2 \theta tan2θ+1=sec2θ\tan^2 \theta + 1 = \sec^2 \theta

Sum to Difference Formulas

sin(a±b)=sin(a)cos(b)±sin(b)cos(a)\sin(a \pm b) = \sin(a)\cos(b) \pm \sin(b)\cos(a) cos(a±b)=cos(a)cos(b)sin(a)sin(b)\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)

Double Angle Formulas

sin(2a)=2sin(a)cos(a)\sin(2a) = 2\sin(a)\cos(a) cos(2a)=cos2(a)sin2(a)\cos(2a) = \cos^2(a) - \sin^2(a) cos(2a)=12sin2(a)\cos(2a) = 1 - 2\sin^2(a) cos(2a)=2cos2(a)1\cos(2a) = 2\cos^2(a) - 1

Sine → Cosine

sin(90θ)=cos(θ)\sin(90^\circ - \theta) = \cos(\theta)

Example: sin(10)cos(20)+sin(20)cos(10)=sin(10+20)=sin(30)=1/2\sin(10^\circ)\cos(20^\circ) + \sin(20^\circ)\cos(10^\circ) = \sin(10^\circ + 20^\circ) = \sin(30^\circ) = 1/2

Problem Set 2.2.12

cos² 30° + sin² 30°
cos² 30° - sin² 30°
2 sin 15° cos 15°
2 sin 30° sin 30° - 1
1 - sin² 30°
cos 22° = sin θ, 0° < θ < 90°, θ =
[2 sin(π/3) cos(π/3)]²
2 sin 15° cos 15° - 1
3 csc² 45° - 3 cot² 45°
cos² 30° - sin² 30°
sin 105° cos 105°
sin 38° = cos θ, 270° < θ < 360°, θ =
sin 30° cos 60° - sin 60° cos 30°
2 cos²(π/6) - 1
(1 - sin 60°)(1 + sin 60°)
2 sin 15° sin 75°
(sin(π/3) - cos(π/3))(sin(π/3) + cos(π/3))
If sin(A) = 3/5, then cos(2A) =
1 - 2 sin²(π/6)
cos 75° sin 75°
sin 15° cos 45° - sin 45° cos 15°
2 - 4 sin² 30°
cos 95° cos 25° - sin 95° sin 25°
sin(π/6) + cos(π/3)
cos 15° sin 45° - cos 45° sin 15°
(sin(π/6) - cos(π/6))(sin(π/6) + cos(π/6))
2 tan² θ - 2 sec² θ