2.2.12 Trigonometric Formulas
Recently, questions involving trigonometric functions have encompassed some basic trigonometric identities. The most popular ones tested are included here:
The Fundamental Identities
Sum to Difference Formulas
Double Angle Formulas
Sine → Cosine
Example:
Problem Set 2.2.12
cos² 30° + sin² 30°
cos² 30° - sin² 30°
2 sin 15° cos 15°
2 sin 30° sin 30° - 1
1 - sin² 30°
cos 22° = sin θ, 0° < θ < 90°, θ =
[2 sin(π/3) cos(π/3)]²
2 sin 15° cos 15° - 1
3 csc² 45° - 3 cot² 45°
cos² 30° - sin² 30°
sin 105° cos 105°
sin 38° = cos θ, 270° < θ < 360°, θ =
sin 30° cos 60° - sin 60° cos 30°
2 cos²(π/6) - 1
(1 - sin 60°)(1 + sin 60°)
2 sin 15° sin 75°
(sin(π/3) - cos(π/3))(sin(π/3) + cos(π/3))
If sin(A) = 3/5, then cos(2A) =
1 - 2 sin²(π/6)
cos 75° sin 75°
sin 15° cos 45° - sin 45° cos 15°
2 - 4 sin² 30°
cos 95° cos 25° - sin 95° sin 25°
sin(π/6) + cos(π/3)
cos 15° sin 45° - cos 45° sin 15°
(sin(π/6) - cos(π/6))(sin(π/6) + cos(π/6))
2 tan² θ - 2 sec² θ