2.1.4 Important Fractions

The following fractions should be memorized for reasons stated in Section 1.2.5. In addition, early problems on the test typically involve converting these fractions to decimals and percentages. So if these conversions were memorized, a lot of time would be saved. Omitted are the “obvious” fractions (14\frac{1}{4}, 13\frac{1}{3}, 15\frac{1}{5}, etc…).

Fraction%Fraction%Fraction% / Decimal
16\frac{1}{6}1623%16\frac{2}{3}\%17\frac{1}{7}1427%14\frac{2}{7}\%18\frac{1}{8}1212%=0.12512\frac{1}{2}\% = 0.125
56\frac{5}{6}8313%83\frac{1}{3}\%27\frac{2}{7}2847%28\frac{4}{7}\%38\frac{3}{8}3712%=0.37537\frac{1}{2}\% = 0.375
37\frac{3}{7}4267%42\frac{6}{7}\%58\frac{5}{8}6212%=0.62562\frac{1}{2}\% = 0.625
47\frac{4}{7}5717%57\frac{1}{7}\%78\frac{7}{8}8712%=0.87587\frac{1}{2}\% = 0.875
57\frac{5}{7}7137%71\frac{3}{7}\%
67\frac{6}{7}8557%85\frac{5}{7}\%
Fraction%Fraction%Fraction%Fraction%
19\frac{1}{9}1119%11\frac{1}{9}\%111\frac{1}{11}9111%9\frac{1}{11}\%112\frac{1}{12}813%8\frac{1}{3}\%116\frac{1}{16}614%6\frac{1}{4}\%
29\frac{2}{9}2229%22\frac{2}{9}\%211\frac{2}{11}18211%18\frac{2}{11}\%512\frac{5}{12}4123%41\frac{2}{3}\%316\frac{3}{16}1834%18\frac{3}{4}\%
49\frac{4}{9}4449%44\frac{4}{9}\%411\frac{4}{11}36411%36\frac{4}{11}\%712\frac{7}{12}5813%58\frac{1}{3}\%516\frac{5}{16}3114%31\frac{1}{4}\%
59\frac{5}{9}5559%55\frac{5}{9}\%511\frac{5}{11}45511%45\frac{5}{11}\%1112\frac{11}{12}9123%91\frac{2}{3}\%716\frac{7}{16}4334%43\frac{3}{4}\%
79\frac{7}{9}7779%77\frac{7}{9}\%711\frac{7}{11}63711%63\frac{7}{11}\%916\frac{9}{16}5614%56\frac{1}{4}\%
89\frac{8}{9}8889%88\frac{8}{9}\%911\frac{9}{11}81911%81\frac{9}{11}\%1116\frac{11}{16}6834%68\frac{3}{4}\%
1011\frac{10}{11}901011%90\frac{10}{11}\%1316\frac{13}{16}8114%81\frac{1}{4}\%
1516\frac{15}{16}9334%93\frac{3}{4}\%

To aid in memorization, it would first help to memorize the first fractions in each column. From here the others can be quickly derived by multiplying the initial fraction by the required integer. For example, if you only had 111\frac{1}{11} memorized as 9111%9\frac{1}{11}\%, but you need to know what 511\frac{5}{11} is, then you could simply multiply by 5:

5×111=5×(9111%)=45511%5 \times \frac{1}{11} = 5 \times (9\frac{1}{11}\%) = 45\frac{5}{11}\%

Although memorization of all fractions is ideal, this method will result in correctly answering the question, albeit a lot slower.

Problem Set 2.1.4

1212%12\frac{1}{2}\%
115\frac{11}{5}
Which is larger 59 or .56?\text{Which is larger } \frac{5}{9} \text{ or } .56?
Which is larger 58 or .622?\text{Which is larger } \frac{5}{8} \text{ or } .622?
178\frac{17}{8}
.777....333...+.555....777... - .333... + .555...
35\frac{3}{5}
18\frac{1}{8}
Which is smaller 911 or .81?\text{Which is smaller } \frac{9}{11} \text{ or } .81?
116\frac{1}{16}
.125.375.625.125 - .375 - .625
114\frac{11}{4}
Which is larger 59 or .555 or 55%?\text{Which is larger } \frac{5}{9} \text{ or } .555 \text{ or } 55\%?
.1666....333...+.8333....1666... - .333... + .8333...
Reciprocal of 1.0625\text{Reciprocal of } -1.0625
Which is larger .46 or 511?\text{Which is larger } .46 \text{ or } \frac{5}{11}?
.111....333....666....111... - .333... - .666...
37.5%37.5\%
Which is smaller 911 or .8?\text{Which is smaller } \frac{9}{11} \text{ or } .8?
37\frac{3}{7}
79\frac{7}{9}
.08333...+.1666...+.25.08333... + .1666... + .25
Which is smaller 711 or .56?\text{Which is smaller } \frac{7}{11} \text{ or } .56?
Which is larger 911 or 81%?\text{Which is larger } \frac{9}{11} \text{ or } 81\%?
.1666...+.333...+.8333....1666... + .333... + .8333...
716\frac{7}{16}
32÷.181818...32 \div .181818...
27\frac{2}{7}
Which is larger .375 or 512?\text{Which is larger } -.375 \text{ or } -\frac{5}{12}?
.333....666....999....333... - .666... - .999...
114\frac{1}{14}
.0625+.125+.25.0625 + .125 + .25
5559% of 2755\frac{5}{9}\% \text{ of } 27
12.5% of 2412.5\% \text{ of } 24
Which is larger .27 or 27?\text{Which is larger } -.27 \text{ or } -\frac{2}{7}?
55÷.454545...55 \div .454545...
.111....1666....333....111... - .1666... - .333...
516\frac{5}{16}
363÷.272727...363 \div .272727...
2137%21\frac{3}{7}\%
88×.090909...88 \times .090909...
445÷.444...\frac{44}{5} \div .444...
314\frac{3}{14}
3557%35\frac{5}{7}\%
72×.083333...72 \times .083333...
7847%78\frac{4}{7}\%
911÷.090909...911 \div .090909...
112\frac{1}{12}
1114\frac{11}{14}
50 is 6.25% of50 \text{ is } 6.25\% \text{ of}
242÷.181818...242 \div .181818...
1623%×48216\frac{2}{3}\% \times 482 *
75÷.5555...75 \div .5555...
6427%64\frac{2}{7}\%
1.21÷.09090...1.21 \div .09090...
1781\frac{7}{8}
6.25%6.25\%
1714\frac{17}{14}
4267%42\frac{6}{7}\%
334%3\frac{3}{4}\%
1110%1\frac{1}{10}\%
9267%92\frac{6}{7}\%
717%7\frac{1}{7}\%
75 is 3.125% of75 \text{ is } 3.125\% \text{ of}
678%6\frac{7}{8}\%
1314\frac{13}{14}
3113%3\frac{1}{13}\%
1514\frac{15}{14}
2137%21\frac{3}{7}\%