1.3.2 Factoring of Numerical Problems

In many of the intermediate problems, there are several examples where factoring can make the problem a lot easier. Outlined in the next couple of tricks are times when factoring would be beneficial towards calculation. We’ll start off with some standard problems:

212+632=212+(321)221^2 + 63^2 = 21^2 + (3 \cdot 21)^2 =212(1+9)= 21^2 \cdot (1 + 9) =4410= 4410

This is a standard trick of factoring that is common in the middle section of the test. Another factoring procedure is as followed:

48×11+44×12=11(48+4×12)48 \times 11 + 44 \times 12 = 11 \cdot (48 + 4 \times 12) =11(96)= 11 \cdot (96) =1056= 1056

Factoring problems can be easily identified because, at first glance, they look like they require dense computation. For example, the above problem would require two, two-digit multiplication and then their addition. Whereas when you factor out the 11 you are left with a simple addition and a multiplication using the 11’s trick.

Another thing is that factoring usually requires the knowledge of another trick. For instance, the first problem required the knowledge of a square (21221^2) while the second example involved applying the 11’s trick.

The following are examples when factoring would lessen the amount of computations:

Problem Set 1.3.2

8² + 24²
27² + 9²
15 × 12 + 9 × 30
28 × 6 - 12 × 14
33² + 11²
48 × 22 - 22 × 78
3.9² + 1.3²
2004 + 2004 × 4
32 × 16 + 16 × 48
19² + 19
2005 × 5 + 2005
27 × 33 - 11 × 81
21 × 38 - 17 × 21
40 × 12 + 20 × 24
51² + 51 × 49
30 × 11 + 22 × 15
21² + 7²
2006 - 2006 × 6
12 × 16 + 8 × 24
1.2² + 3.6²
14 × 44 - 14 × 30
60 × 32 - 32 × 28
45 × 22 - 44 × 15
(20 × 44) - (18 × 22)
49² + 49
29² + 29
16 × 66 - 16 × 50
59² + 59
14 × 38 - 14 × 52
41 × 17 - 17 × 24
17 × 34 - 51 × 17
15 × 36 + 12 × 45
69² + 69
13 × 77 + 91 × 11
11³ - 11²
12 × 90 + 72 × 15
79² + 79
54 × 11 + 99 × 6
10 · 11 + 11 · 11 + 12 · 11
119² + 119
39² + 39
18 × 36 - 18 × 54
22 × 75 + 110 × 15
99 × 99 + 99
45 × 16 - 24 × 30
11² - 11³
25 × 77 + 25 × 34
15 × 18 + 9 × 30
24 × 13 + 24 × 11
129 × 129 + 129
13 × 15 + 11 × 65
33 × 31 + 31 × 29
31 × 44 + 44 × 44
12² + 24²
73 × 86 + 77 × 84
63 × 119 + 121 × 17
48 × 11 + 44 × 12
109² + 109
38 × 107 + 47 × 93
64 × 21 - 42 × 16
23 × 34 + 43 × 32
72 × 11 + 99 × 8
43 × 56 + 47 × 54
15 × 75 + 45 × 25
42 × 48 + 63 × 42
14² - 28²
31 × 117 + 30 × 213
48 × 28 + 27 × 28
34 × 56 + 55 × 34
34 × 45 + 54 × 43