3.1.10 Complex Numbers

The following is a review of Algebra-I concerning complex numbers. Recall that i=1i = \sqrt{-1}. Here are important definition concerning the imaginary number a+bia + bi:

  • Complex Conjugate: abia - bi
  • Complex Modulus: a2+b2\sqrt{a^2 + b^2}
  • Complex Argument: arctanba\arctan \frac{b}{a}

The only questions that are usually asked on the number sense test is multiplying two complex numbers and rationalizing a complex number. Let’s look at examples of both:

Multiplication: (a+bi)(c+di)=(acbd)+(ad+bc)i(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i

Example: (32i)(4+i)=a+bi,a+b=(3 - 2i) \cdot (4 + i) = a + bi, a + b = Solution: a=34+21=14a = 3 \cdot 4 + 2 \cdot 1 = 14 and b=31+(2)4=5b = 3 \cdot 1 + (-2) \cdot 4 = -5. So a+b=145=9a + b = 14 - 5 = 9.

Rationalizing: (a+bi)1=abia2+b2(a + bi)^{-1} = \frac{a - bi}{a^2 + b^2}

Example: (34i)1=a+bi,ab=?(3 - 4i)^{-1} = a + bi, a - b = ? Solution: (34i)1=3+4i32+42a=325(3 - 4i)^{-1} = \frac{3 + 4i}{3^2 + 4^2} \Rightarrow a = \frac{3}{25} and b=425b = \frac{4}{25}. So ab=325425=125a - b = \frac{3}{25} - \frac{4}{25} = -\frac{1}{25}.

The following are some more practice problems about Complex Numbers:

Problem Set 3.1.10

(4i)2=a+bi,a=(4 - i)^2 = a + bi, a =
(65i)(6+5i)=(6 - 5i)(6 + 5i) =
The conjugate of (4i6)(4i - 6) is a+bi,a=a + bi, a =
(5+i)2=a+bi,a=(5 + i)^2 = a + bi, a =
(93i)(3+9i)=a+bi,a=(9 - 3i)(3 + 9i) = a + bi, a =
(8+3i)(38i)=a+bi,a=(8 + 3i)(3 - 8i) = a + bi, a =
(2+3i)÷(2i)=a+bi,a=(2 + 3i) \div (2i) = a + bi, a =
(34i)(3+4i)=(3 - 4i)(3 + 4i) =
(2432i)(24+32i)=(24 - 32i)(24 + 32i) =
(5+12i)2=a+bi,a+b=(5 + 12i)^2 = a + bi, a + b =
(35i)(25i)=a+bi,a+b=(3 - 5i)(2 - 5i) = a + bi, a + b =
(25i)(3+5i)=a+bi,a=(2 - 5i)(3 + 5i) = a + bi, a =
(25i)(34i)=a+bi,ab=(2 - 5i)(3 - 4i) = a + bi, a - b =
(43i)(2i)=a+bi,ab=(4 - 3i)(2 - i) = a + bi, a - b =
(2+7i)(27i)=a+bi,ab=(2 + 7i)(2 - 7i) = a + bi, a - b =
(2+3i)(4+5i)=a+bi,a=(2 + 3i)(4 + 5i) = a + bi, a =
(3+4i)2=a+bi,a=(3 + 4i)^2 = a + bi, a =
The modulus of 14+48i14 + 48i is
(25i)2=a+bi,a+b=(2 - 5i)^2 = a + bi, a + b =
(5+4i)(3+2i)=a+bi,a=(5 + 4i)(3 + 2i) = a + bi, a =
(0+4i)2=a+bi,b=(0 + 4i)^2 = a + bi, b =
(4+5i)(45i)=(4 + 5i)(4 - 5i) =
The modulus of (11+60i)2(11 + 60i)^2 is
(03i)5=a+bi,b=(0 - 3i)^5 = a + bi, b =
(35i)(2+i)=a+bi,a+b=(3 - 5i)(2 + i) = a + bi, a + b =
(42i)(3i)=a+bi,a+b=(4 - 2i)(3 - i) = a + bi, a + b =
(1+i)9=(1 + i)^9 =
(2+3i)÷(32i)=a+bi,b=(2 + 3i) \div (3 - 2i) = a + bi, b =
(23i)÷(32i)=a+bi,a=(2 - 3i) \div (3 - 2i) = a + bi, a =
(2i)6=(2i)^6 =
(3+4i)÷(5i)=a+bi,a+b=(3 + 4i) \div (5i) = a + bi, a + b =
The modulus of (24+7i)2(24 + 7i)^2 is
(3i2)÷(3i+2)=a+bi,b=(3i - 2) \div (3i + 2) = a + bi, b =
The modulus of (5+12i)2(5 + 12i)^2 is