3.1.7 Log Rules

Logarithms are usually tested on the third and fourth columns of the test, however, if logarithm rules are fully understood these can be some of the simplest problems on the test. The following is a collection of log rules which are actively tested:

  • Definition: logab=xax=b\log_a b = x \Leftrightarrow a^x = b
  • Power Rule: logabn=nlogab\log_a b^n = n \log_a b
  • Addition of Logs: logab+logac=loga(bc)\log_a b + \log_a c = \log_a (bc)
  • Subtraction of Logs: logablogac=loga(bc)\log_a b - \log_a c = \log_a (\frac{b}{c})
  • Change of Bases: logab=logbloga\log_a b = \frac{\log b}{\log a}

In the above table log10a\log_{10} a is represented as loga\log a. The following are some sample problems illustrating how each one of the rules might be tested:

Example: Find log4.0625\log_4 .0625. Solution: Applying the definition we know that 4x=.0625=1164^x = .0625 = \frac{1}{16}. Therefore, our answer is x=2x = -2.

Example: Find log816\log_8 16. Solution: Again, applying the definition, 8x=168^x = 16, which can be changed to 23x=24x=432^{3x} = 2^4 \Rightarrow x = \frac{4}{3}.

Example: Find log1216+log1236log124\log_{12} 16 + \log_{12} 36 - \log_{12} 4. Solution: We know from the addition/subtraction of logs that the above expression can be written as log1216364=log12169=log1214412x=144x=2\log_{12} \frac{16 \cdot 36}{4} = \log_{12} 16 \cdot 9 = \log_{12} 144 \Rightarrow 12^x = 144 \Rightarrow x = 2.

Example: Find log58÷log2516\log_5 8 \div \log_{25} 16 Solution: These are probably the most challenging logarithm problems you will see on the exam. They involved changing bases and performing the power rule. Let’s look at what happens when we change bases: log58÷log2516=log8log5÷log16log25=log23log5×log52log24=3log2log5×2log54log2=3×12=32\log_5 8 \div \log_{25} 16 = \frac{\log 8}{\log 5} \div \frac{\log 16}{\log 25} = \frac{\log 2^3}{\log 5} \times \frac{\log 5^2}{\log 2^4} = \frac{3 \cdot \log 2}{\log 5} \times \frac{2 \cdot \log 5}{4 \cdot \log 2} = 3 \times \frac{1}{2} = \frac{3}{2}.

In addition to the above problems, there are some approximations of logarithms which pop up. For those, there are some quantities which would be nice to have memorized to compute a more accurate approximations. Those are:

  • log102.3\log_{10} 2 \approx .3
  • log105.7\log_{10} 5 \approx .7
  • ln2.7\ln 2 \approx .7
  • ln102.3\ln 10 \approx 2.3

Where lnx=logex\ln x = \log_e x.

The following is example of how approximations of logs can be calculated: 200log200=200log(2100)=200(log2+log100)200(.3+2)=460200 \log 200 = 200 \log(2 \cdot 100) = 200 \cdot (\log 2 + \log 100) \approx 200 \cdot (.3 + 2) = 460

The following are some more practice problems:

Problem Set 3.1.7

2log3x=4,x=-2 \log_3 x = 4, x =
log122+log128+log129=\log_{12} 2 + \log_{12} 8 + \log_{12} 9 =
log340log38+log31.8=\log_3 40 - \log_3 8 + \log_3 1.8 =
logx216=3,x=\log_x 216 = 3, x =
f(x)=log3x4,f(3)=f(x) = \log_3 x - 4, f(3) =
log816=\log_8 16 =
log3x=4,x=\log_3 x = 4, \sqrt{x} =
logx343=3,x=\log_x 343 = 3, x =
If logb.25=3\log_b .25 = 3, then logb4=\log_b 4 =
(log56)(log65)=(\log_5 6)(\log_6 5) =
log3216÷log36=\log_3 216 \div \log_3 6 =
log332log316+log31.5=\log_3 32 - \log_3 16 + \log_3 1.5 =
log264÷log24=\log_2 64 \div \log_2 4 =
log432+log42log416=\log_4 32 + \log_4 2 - \log_4 16 =
log5625×log525÷log5125=\log_5 625 \times \log_5 25 \div \log_5 125 =
log48×log84=\log_4 8 \times \log_8 4 =
log4256÷log416×log464=\log_4 256 \div \log_4 16 \times \log_4 64 =
log8k=13,k=\log_8 k = \frac{1}{3}, k =
log5M=2,M=\log_5 M = 2, \sqrt{M} =
4log9k=2,k=4 \log_9 k = 2, k =
log48=N\log_4 8 = N then 2N=2N =
log93=W\log_9 3 = W then 3W=3W =
logk32=5,k=\log_k 32 = 5, k =
log3[log2(log2256)]=\log_3 [\log_2 (\log_2 256)] =
log4.5=k,k=\log_4 .5 = k, k =
log5[log4(log381)]=\log_5 [\log_4 (\log_3 81)] =
log168=w,w=\log_{16} 8 = w, w =
log9k=2.5,k=\log_9 k = 2.5, k =
log2[log3(log2512)]=\log_2 [\log_3 (\log_2 512)] =
logb.5=.5,b=\log_b .5 = -.5, b =
logb8=3,b=\log_b 8 = 3, b =
log3[log4(log5625)]=\log_3 [\log_4 (\log_5 625)] =
log48=k,k=\log_4 8 = k, k =
log4[log3(log5125)]=\log_4 [\log_3 (\log_5 125)] =
log4.125=k,k=\log_4 .125 = k, k =
log8(3x2)=2,x=\log_8 (3x - 2) = 2, x =
log4[log2(log636)]=\log_4 [\log_2 (\log_6 36)] =
log4x=3,x=\log_4 x = 3, \sqrt{x} =
log5x2=4,x=\log_5 x^2 = 4, \sqrt{x} =
300log600=300 \log 600 = *
log4x=.5,x=\log_4 x = -.5, x =
3log2x=6,x=3 \log_2 x = 6, \sqrt{x} =
log2x=9,x3=\log_2 x = 9, \sqrt[3]{x} =
logx64=3,x2=\log_x 64 = 3, x^{-2} =
log9x=2,x=\log_9 x = 2, \sqrt{x} =
logk1728=3,k=\log_k 1728 = 3, k =
log4x=3,x=\log_4 x = 3, \sqrt{x} =
log2(log10100)=\log_2 (\log_{10} 100) =
logx64=1.5,x=\log_x 64 = 1.5, x =
log8(log416)=\log_8 (\log_4 16) =
log9(log327)=\log_9 (\log_3 27) =