4.4.2 Factorizations

Here are the most common “obscure” factorizations asked on the Number Sense exam:

Key Formulas

Sum of Cubes

x3+y3=[(x+y)23xy](x+y)x^3 + y^3 = [(x + y)^2 - 3xy](x + y)

Difference of Cubes

x3y3=[(xy)2+3xy](xy)x^3 - y^3 = [(x - y)^2 + 3xy](x - y)

Example

Problem: If x+y=5x + y = 5 and xy=3xy = 3, find x3+y3x^3 + y^3

Solution: x3+y3=(5233)(5)=(259)(5)=16×5=80x^3 + y^3 = (5^2 - 3 \cdot 3)(5) = (25 - 9)(5) = 16 \times 5 = 80

Additional Factorizations

IdentityFormula
Sophie Germainx4+4y4=(x2+2xy+2y2)(x22xy+2y2)x^4 + 4y^4 = (x^2 + 2xy + 2y^2)(x^2 - 2xy + 2y^2)
Vieta/Newton (squares)(a+b+c)2=a2+b2+c2+2(ab+bc+ca)(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
Complete the rectangle(xy+x+y+1)=(x+1)(y+1)(xy + x + y + 1) = (x + 1)(y + 1)
Complete the rectangle(xyxy+1)=(x1)(y1)(xy - x - y + 1) = (x - 1)(y - 1)

Problem Set 4.4.2

Practice these problems. Type your answer and press Enter to check:

xy=1, x+y=−2, x³+y³=
xy=3, x−y=−1, x³−y³=
x+y=1, xy=3, x³+y³=
x−y=2, xy=5, x³−y³=
xy=5/3, x+y=4, x³+y³=
xy=−3, x−y=−2, x³−y³=