4.3.4 Sum of the Squares of Arbitrary Fibonacci Sequence

For the sum of the squares of the first nn terms of an Arbitrary Fibonacci Sequence:

The Formula

A12+A22++An2=An×An+1A1(A2A1)A_1^2 + A_2^2 + \dots + A_n^2 = A_n \times A_{n+1} - A_1(A_2 - A_1)

Special Case: Standard Fibonacci

For the Standard Fibonacci Sequence, F2F1=0F_2 - F_1 = 0, so the formula simplifies to:

F12+F22++Fn2=Fn×Fn+1F_1^2 + F_2^2 + \dots + F_n^2 = F_n \times F_{n+1}

Example: Standard Fibonacci

12+12+22+32++212+342=34×55=18701^2 + 1^2 + 2^2 + 3^2 + \dots + 21^2 + 34^2 = 34 \times 55 = 1870

Problem Set 4.3.4

Practice these problems. Type your answer and press Enter to check:

2² + 1² + 3² + 4² + 7²
1² + 1² + 2² + 3² + 5² + 8²
2² + 3² + 5² + 8² + 13²
1² + 1² + 2² + 3² + 5² + 8² + 13²
2² + 1² + 3² + 4² + 7² + 11²