4.4.1 a/b − (na − 1)/(nb − 1)

This formula deals with subtracting expressions where one fraction is derived from another.

Formula 1: When numerator and denominator are one less

abna1nb1=bab(nb1)\frac{a}{b} - \frac{na - 1}{nb - 1} = \frac{b - a}{b \cdot (nb - 1)}

Example

351729=53529=2145\frac{3}{5} - \frac{17}{29} = \frac{5 - 3}{5 \cdot 29} = \frac{2}{145}

Formula 2: When numerator and denominator are one more

abna+1nb+1=(ba)b(nb+1)\frac{a}{b} - \frac{na + 1}{nb + 1} = \frac{-(b - a)}{b \cdot (nb + 1)}

Tip: Look at the “complicated” fraction to determine if its numerator and denominator are one greater or one less than a multiple of the “simpler” fraction’s values.


Problem Set 4.4.1

Practice these problems. Type your answer and press Enter to check:

5/7 − 9/13
5/7 − 11/15
7/11 − 55/87
3/5 − 59/99
2/7 − 21/71
29/35 − 5/6
43/49 − 7/8
23/25 − 229/249