4.1.2 Multiplying Three-Digit Number by Three-Digit Number

This is an extension of the previous section. The procedure is the same but requires more multiplication and bookkeeping.

The Method

For abc×defabc \times def, group as (a)(bc)(a)(bc) and (d)(ef)(d)(ef):

[100a+(bc)]×[100d+(ef)]=10000ad+100[a(ef)+d(bc)]+(bc)(ef)[100a + (bc)] \times [100d + (ef)] = 10000ad + 100[a(ef) + d(bc)] + (bc)(ef)

The Rule

  1. Ones and Tens = last two digits of (bc)×(ef)(bc) \times (ef)
  2. Hundreds and Thousands = a×(ef)+d×(bc)a \times (ef) + d \times (bc) + carry
  3. Remaining = a×da \times d + carry

Example: 211 × 416

StepCalculationResult
Units/Tens16 × 11172 (carry 1)
Hundreds/Thousands16 × 2 + 11 × 4 + 177
Remaining4 × 28

Answer: 87772

Example: 217 × 245

StepCalculationResult
Units/Tens17 × 45765 (carry 7)
Hundreds/Thousands45 × 2 + 17 × 2 + 7131 (carry 1)
Remaining2 × 2 + 15

Answer: 53165

Tip: Most of the time, the digits in three-digit by three-digit multiplication are pretty low, making the actual multiplication easy – the challenge is keeping track of everything in your head!


Problem Set 4.1.2

Practice these problems. Type your answer and press Enter to check:

Basic 3×3 Multiplication

212 × 311
331 × 122
131 × 223
234 × 211
123 × 321
222 × 203
317 × 245
344 × 522
121 × 411
221 × 141
131 × 212
124 × 312

Squares of Three-Digit Numbers

208²
404²
707²
402²
804²
909²
306²
204²
408²

More Practice

311 × 122
412 × 112
123 × 301
511 × 212
151 × 115
213 × 331
141 × 114
243 × 151
215 × 152
132 × 214
135 × 152
126 × 214
415 × 312
215 × 321
113 × 314
414 × 325