4.5.3 Repeating Decimals in Other Bases - Convert to Base 10

Converting repeating decimals in other bases to base-10 fractions.

Simple Form: .xxxb.xxx\dots_b

Use the infinite geometric series formula:

.5558=58+564+=58(11/8)=57.555\dots_8 = \frac{5}{8} + \frac{5}{64} + \dots = \frac{5}{8(1 - 1/8)} = \frac{5}{7}

Form: .xyxyxyb.xyxyxy\dots_b

  1. Numerator: Convert two-digit number xyxy to base-10
  2. Denominator: b21b^2 - 1

Example: .3535358.353535\dots_8 → Numerator: 358=291035_8 = 29_{10}; Denominator: 641=6364 - 1 = 6329/63

Form: .xyyyb.xyyy\dots_b

  1. Numerator: Convert xyxy to base-10 and subtract xx
  2. Denominator: b(b1)b(b - 1)

Example: .35558.3555\dots_8 → Numerator: 35838=261035_8 - 3_8 = 26_{10}; Denominator: 8×7=568 \times 7 = 5613/28


Problem Set 4.5.3

Practice these problems. Type your answer and press Enter to check:

0.444...₈ to base-10 fraction
0.444...₉ to base-10 fraction
0.333...₈ to base-10 fraction
0.444...₇ to base-10 fraction
0.777...₉ to base-10 fraction
0.3131...₅ to base-10 fraction
0.3444...₆ to base-10 fraction
0.4777...₈ to base-10 fraction
0.3222...₇ to base-10 fraction
0.1666...₈ to base-10 fraction
0.1333...₄ to base-10 fraction
0.3444...₇ to base-10 fraction
0.2323...₅ to base-10 fraction
0.6333...₇ to base-10 fraction
0.4666...₈ to base-10 fraction
0.1313...₅ to base-10 fraction
0.1444...₆ to base-10 fraction